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ABSTRACT 

This paper demonstrates the usefulness of GERT simulation for 

modeling and evaluating policies and processes in the area of test 

and checkout.  Some of the latest developments and extensions to a 

GERT simulation program are used to model a test plan development 

process, a general test and checkout process, and specific cases of 

the latter. 
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A STOCHASTIC NETWORK APPROACH TO TEST AND CHECKOUT 

INTRODUCTION 

GERT (Graphical ^valuation and Review Technique) is a network 

analysis technique that has been developed for the formulation, model- 

ing and evaluation of complex systems and processes.  It embodies con- 

cepts found in stochastic network, signal flowgraph, PERT and semi- 

Markov theory.  Descriptions of the development and applications of 

the technique may be found in References [5, 6, 10, 15, 16, 17, 18, 

23 and 24]. 

The purpose of the paper is to demonstrate the usefulness of a 

GERT simulation program for modeling and evaluating various develop- 

ment, diagnosis and repair policies and processes encountered in the 

test and checkout environment. 

Unless otherwise noted, the terminology and network conventions 

used throughout this paper correspond to tho"se in the GERT Simulation 

Program II (GERTS II) manual [l7].  Briefly, the following list and 

Figure 1 indicate those characteristics and capabilities of GERTS II 

and subsequent extensions that are used in this paper. 

1. Nodes which are characterized by: 

a. Deterministic node type. All branches emanating 

from the node are taken if the node is realized. 

b. Probabilistic node type. At most, one branch 

emanating from the node is realized (the proba- 

bilities that determine which one of the branches 

is taken are specified by the user) . 

c. Number of releases.  One number specifies the num- 

ber of releases or times that activities inci- 

dent to the node must be realized before the node 

can be realized for the first time; the other 

number specifies the number of releases required 

to have the node realized after the first time. 

2.  Activities (branches) that are characterized by: 

a.  Probabilities associated with whether or not the 
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Fig. 1   —Node Characteristics and Network Modifications 
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branch emanating from a probabilistic node will be taken. 

b. Distribution of the time to traverse the branch. 

c. An activity number when completion of the acti- 

vity may cause a modification in the network. 

3. Network modifications which occur when completion of a modi- 

fication activity causes one node to be replaced by another node.  The 

node to be replaced is deleted from the network when the network modi- 

fication activity is realized.  The activities which then result 

are from the node that is inserted.  In Figure 1, when Modification 

Activity 1 is completed, Node 7 replaces Node 5. 

4. Counters which count the number of times a branch or set of 

branches is realized prior to the realization of a node. 

5. "LAGs" associated with any node relative to any other node, 

where the LAG between any two nodes is the difference between the first 

realization times of the two nodes. 

6. Performance measures and statistics associated with: 

a. The probability that a specified node is realized. 

b. The average time to realize the specified node. 

c. An estimate of standard deviation of the time to 

realize the specified node. 

d. The minimum time observed to realize the specified 

node. 

e. The maximum time observed to realize the specified 

node. 

f. A histogram of the time to realize the specified 

node. 

g. In addition to statistics (b-f above) for single 

nodes, corresponding statistics are available for 

the LAGs associated with node pairs.  Furthermore, 

because situations exist where the nodes of a pair 

are not on the same path in the network, the LAG 

between these two nodes might be either positive 

or negative depending upon which node is realized 

first.  Therefore, the positive (POSLAG) and nega- 

tive (NEGLAG) portions of the LAG are accumulated 

separately from the total LAG (TLAG). 



APPLICATIONS TO TEST AND CHECKOUT 

GERT may be applied to a variety of test and checkout problems at 

various levels of detail.  At the gross level, it may be used as a 

communication aid or to model systems or processes for purposes of in- 

vestigating overall programs, plans, policies, etc.  At the detailed 

level, it may be used to investigate relevant statistics associated with 

the operational characteristics of a system or process for purposes of 

identifying critical components, bottleneck activities, etc. 

In the following section a list of possible GERT applications to 

test and checkout will be presented, followed by several examples of 

how GERT can be used for modeling specific test and checkout processes. 

POSSIBLE GERT APPLICATIONS 

Procedures in test and checkout that have been identified as 

suitable for GERT representation and analysis include: 

1. Evaluating tradeoffs between automated and manual checkout 
including the identification of key factors affecting the 
degree of automation and computer involvement in testing, 
and the investigation of man-machine interaction problems. 

2. Evaluating the performance of alternative designs and con- 
figurations of proposed and existing automatic test equip- 
ment (ATE). 

3. Evaluating tradeoffs and apportionments between built-in 
(on-board) and test-bench (ground) checkout. 

4. Evaluating tradeoffs between system reliability and maintain- 
ability. 

5. Modeling the test plan development process, including the 
design, interface, programming, validation and documentation 
stages.  The model would be useful for 

a. Evaluating the effect of various test philosophies 
and maintenance policies on test plan design. 

b. Improving the design of the interface between the 
ATE and the unit under test (UUT). 

c. Determining how various validation procedures affect 
the time to develop a final test plan. 
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6.  Modeling test and checkout processes for 

a. Evaluating diagnostic testing and retesting policies. 

b. Establishing methodology for setting detection thres- 
holds, determining levels of fault isolation, and 
selecting and sequencing the individual tests involved 
in fault location; 

c. Evaluating repair policies; 

d. Evaluating condemnation policies; 

e. Establishing periodic checkout intervals based upon 
system reliability and maintainability. 

A variety of design and performance criteria might be encountered 

in the above GERT applications. Performance improvement might result, 

for example, from 

1. Increased reliability of automated checkout systems; 

2. Faster test plan development. 

3. Improved fault diagnostic capability (faster fault location; 
higher probability of correct diagnosis, reduced number of 
tests required, etc.). 

4. Improved maintainability (reduced repair times, lower pro- 
bability of an unsuccessful repair, etc.)- 

5. Improved retesting and repair verification (lower probability 
of accepting faulty equipment, lower probability of rejecting 
repaired equipment, etc.). 

6. Increased operational readiness. 

Several specific examples of how GERT can be used for modeling 

test and checkout processes now will be discussed. 
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TEST PLAN DEVELOPMENT PROCESS 

GERT is useful as a visual communication aid because it can pro- 

vide network representations not only of precedence relationships (as 

depicted by standard PERT-type networks) but also probabilistic branch- 

ing and feedback loops.  The following example demonstrates GERT's use 

as a communication aid in describing a Test Plan Development Process 

(TPDP).  The aim of the TPDP is to develop a test plan that enables au- 

tomatic test equipment (ATE) to test a given subsystem or unit under 

test (UUT).  The plan consists of an acceptable test program stored on 

magnetic or paper tape and a written test document describing step-by- 

step test procedures.  Figure 2 shows a simple activity network model 

of the TPDP.  The process may be divided into six major stages: (1) pre- 

paration, (2) design, (3) UUT-ATE interface, (4) programming, (5) vali- 

dation, and (6) final documentation.  The activities associated with 

these stages are depicted in the GERT network model presented in Figure 3. 

Preparation 

Preparation of the TPDP starts with the input of a set of 

requirements including (1) policy considerations that reflect test 

philosophy and objectives, maintenance policies and inspection 

standards; (2) UUT information including performance criteria, hard- 

ware configuration, failure modes, test point location, etc., and (3) 

ATE information including hardware configuration, available stimuli, 

and other test capabilities.  These requirements are checked to 

ensure compatibility of the policy considerations with UUT and ATE 

operational characteristics in order to establish feasibility of the 

test specifications.  If there are neither major logical inconsistencies 

nor hardware limitations, the test specifications are approved to 

proceed to the design stage (in certain instances, interactive feedback 

with the customer may occur at this point to resolve any incompatibilities) 

Design 

A test concept is formulated and a design package is prepared. 

The design provides a test-oriented quasi-English language flow- 

chart with each test step defined in terms of stimuli inputs, 

stimuli routing, signal conditioning, UUT operating conditions, 

parameter measurement identification, and decision criteria 
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Fig.   2   --  Test Plan Development Process   (General) 



-8- 

^11 

id 
4-1 

co 
CD 
<J 

o 
u 

PM 

•u 
c 

I a. 
o 

.—i 

QJ 

?> 
OJ a 
c 
CO 

co 
111 
H 

I 
I 

M 
•H 



for test sequencing.  The package is then reviewed to determine 

if the design is still feasible and the anticipated level 

of test plan performance is acceptable. As a result of review, the 

test design is either discarded, sent back for redesign, or approved 

for submission to the next stage of development.  The design and 

review activities are interactive and continue until a detailed 

test plan design is approved or discarded as infeasible. 

UUT-ATE Interface 

An adapter may be needed to interface the UUT to the ATE's 

stimuli generators, measurement devices, and switches.  This adapter 

establishes a testing environment that emulates that experienced by 

the UUT in its operational environment. The required adapter design 

specifications may be obtained from the test design flow chart, ATE 

circuit diagrams, and wiring listings. The interface stage and the 

test plan programming stage (discussed in the next section) are 

initiated simultaneously upon completion of the test plan design 

stage. 

Programming 

The test programming stage consists of three major activities: 

(a) programming, (b) compilation, and (c) verification.  Programming 

includes coding the information from the flow chart provided by the 

design process into a series of programmer-oriented language state- 

ments and keypunching cards to form an input source deck. 

Compilation involves converting the programmer-oriented language 

source deck to a machine-oriented object deck. The output of the 

compilation will vary with the ATE and the programming languages 

used. For example, a sophisticated compiler may accept a test- 

oriented meta-language input and, in addition to the normal trans- 

lating and assembling functions, it may automatically check the legality 

of source language statements, assign ATE resources (e.g., power sup- 

plies), and generate a listing of wire interconnections from the ATE 

to the UUT. 
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Verification is concerned with determining whether or not the 

program accurately represents the intended design.  It is a visual 

process of comparing the flow chart and the compilation output list. 

Errors are corrected by modifying and recompiling the source deck. 

These comparisons and modifications are continued until the program is 

completely verified. 

Validation 

Validation is concerned with determining whether or not the 

program adequately represents "real life," viz., whether or not it 

can detect and isolate the faults of interest.  Complete validation 

requires exercising the UUT in all operational and failure modes 

under the control of the newly verified program.  This is accomplished 

by first testing a known operational UUT in all operational modes. 

The program is corrected as required until all tests are GO. The 

program then is validated for failure modes by forced NO-GO branching, 

i.e., at each point in the GO, NO-GO chain, a test result is forced 

out of limits by manual intervention. Next, actual failures are 

introduced into the UUT to test the ability of the program to detect 

and isolate the known faults that might not otherwise be revealed by 

forced branching. Numerous problems may arise during validation, 

including program coding errors, faulty test logic, improper test 

limits or test points, adapter interface wiring errors, an undetected 

faulty UUT, and/or equipment failures.  Therefore, considerable time 

and effort must be devoted to the validation activity before the 

program is considered acceptable for documentation. 

Final Documentation 

After validation and final approval of the test program are 

obtained, final flow charting, coding, compilation, and documentation 

are completed and copies of the test program are generated. 



.11. 

DIAGNOSTIC TEST AND REPAIR PROCESS 

The following example demonstrates GERT's use for modeling a Diag- 

nostic Test and Repair Process (DTRP).  Figure 4 shows an aggregated 

generalized activity network of the DTRP.  The main objective of the 

DTRP is to decide, based on an initial series of diagnostic tests, 

whether or not a given UUT is defective.  A significant feature of the 

process is that if the UUT is disapproved as defective, an attempt is 

made to locate the defect or fault and, based on the results of this 

fault location activity, a decision is rendered to repair or condemn 

the unit. 

Figure 5 elaborates on the process in a more detailed GERT net- 

work.  For this particular network, the input incorporates any a priori 

knowledge of the percentage of defective units expected (this would be 

reflected by the probabilities associated with activities emanating 

from the source node).  Analysis of historical data or exhaustive test- 

ing on a sample number of UUT's may provide the basis for estimating 

this percentage. 

The network in Figure 5 is essentially a graphic representation 

of the hypothesis testing involved in the DTRP.  For example, if the 

null hypothesis assumes the unit is defective and should be condemned, 

Activity (8, 17) represents the case of approving a defective unit (or 

in statistical terms, rejecting the hypothesis that the unit is defec- 

tive and should be condemned, when in reality the hypothesis is true). 

Similarly, Activity (6, 15) represents the case of condemning a non- 

defective unit (or in statistical terms, accepting the hypothesis that 

the unit should be condemned when indeed it should not).  Therefore, 

the probabilities associated with realizing Node 17 and Node 15 (stan- 

dard GERT statistics) represent the probabilities Q" and (3 associated 

with committing Type I and Type II errors respectively.  GERT also 

can be used to model a confidence test process (e.g., periodically 

testing units to determine if they are still nondefective).  In this 

case, all units might be assumed to be nondefective unless a priori 

information to the contrary exists. 

Although each of the activities in Figure 5 is relatively self- 

explanatory, some aspects of the network deserve elaboration. 
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Disapprove_ Fault Locate 

O 
Return for Retest 

Fig.  4  --Diagnostic Test and Repair Process  (General) 
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Basically the network has two main paths, one representing activities 

associated with the test process when the UUT is in a nondefective 

state, and the other when the UUT is in a defective state.  It is 

necessary to differentiate between these two paths because the char- 

acteristics of the activities may differ depending upon the state of 

the UUT. For example, one might be expected to associate (and be 

able to estimate from the analyses of historical data) a smaller 

probability of disapproval and a larger attempted fault location time 

for nondefective UUT's than for defective UUT's. The UUT may enter 

the test and repair process in either a defective or a nondefective 

state, and may change state during the test and repair process.  The 

network modification capability of GERT (transposition of Node 4 

and Node 8) effects this change of state.  The true state is known 

only when perfect diagnosis and perfect repair exist. More commonly 

(and as depicted by our network) the approval and disapproval deci- 

sions are made when the true state is not known with certainty, 

thereby creating the attendant risks of committing Type I and Type II 

error$. 

The given network represents only one of a number of possible diag- 

nostic and repair policies.  For this case, if a UUT is disapproved, 

fault location is initiated, and then, based on results of this activity, 

a decision is made to condemn or repair.  (It may be obvious after in- 

itial testing that a particular UUT is beyond repair, in which case the 

fault location time is zero.) An additional policy may dictate, for 

example, that if the UUT still has not been approved after the n  re- 

test, it is automatically condemned.  The network easily may be restruc- 

tured to represent this new policy, as depicted in Figure 6.  For this 

policy, Node 18 acts as a counter (counting the initial diagnostic test 

and the number of retests).  A t = 0 time is associated with Activity 

(5'5") and Activity (9'9") to ensure that the replacement has occurred 

after Activity (18,19) is realized.  This could be accomplished by as- 

signing a small positive time, say 0.001, to the activities. 

Once a network reflects the desired policies to be evaluated, then 

the statistics of interest or mreasures of performance can be obtained 

from the simulation. An example of how this might be done is presented 

in the next section. 
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Non-defective and  condemned 

?°) I   Defective and  condemned 

Fig.   6  -- Portion of a   GERT   Network Depicting Policy of Automatic 
Condemnation of  UUT if Disapproved After n Retests 
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PERIODIC CHECKOUT AND REPAIR PROCESS 

The following example demonstrates GERT's use for modeling and 

evaluating the general periodic checkout and repair process depicted by 

the network in Figure 7.  This process deals with a type of system 

that is to be maintained in an operational status, has an exponential 

failure distribution with a constant failure rate X, and periodically 

undergoes a checkout to determine whether or not it is still 

operational. The system undergoes the checkout of duration t=s 

every c time periods. The checkout imposes a stress (probability of 

failure) q on a good system. Furthermore, time-deterioration of a 

good system starts anew (or because the failure rate is constant, 

continues) at the end of the checkout. That is, even if one component 

of the system fails and initiates a repair activity, the system is 

sufficiently complex that the overall failure characteristics of the 

system are unaffected. 

A special case of the checkout and repair process will be 

developed here to demonstrate the utility of several features of 

GERTS (viz., clocks, counters, network modifications, LAG's) for 

analyzing test and checkout processes. This particular model was 

selected because of its simplicity, and also because it can be 

verified analytically. Once verified, the model can be expanded 

to more adequately represent "real life" processes.  (In addition, 

this simple case can serve as a basis for future development of a 

cost analysis capability for GERTS.) 

For this special case it is assumed that the system undergoes a 

checkout of duration s=0, and the time between checkouts is constant 

(i.e., isochronal according to calendar time). The checkout is 

assumed to uncover any existing failure (i.e., perfect checkout) 

whether caused by the checkout stress or by natural deterioration. 

If a failure is detected by the checkout, a repair time r (assumed 

to be constant) is required to correct the previously identified 

cause of failure. Table 1 summarizes these assumptions and initial 

conditions. 

Two different aspects of the periodic checkout and repair 

process have been modeled.  The first is a network representation of 
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Table 1 

ASSUMPTIONS AND INITIAL CONDITIONS FOR SPECIAL CASE 
OF A PERIODIC CHECKOUT PROCESS 

ASSUMPTIONS 

Systems tested have negative exponential failure distribu- 
tions with mean \i  = 1/X. 

Checkout is perfect, i.e., all failures that exist are 
correctly detected; otherwise the system is correctly 
identified as being operational.  Also, checkout time is 
zero (s=0). 

Repair is perfect, i.e., upon completion the repaired 
component is operational.  However, other components 
of the system may have failed during the repair period. 
Also, repair time is constant and less than the periodic 
checkout cycle time (r < c). 

Periodic checkout cycle is isochronal, i.e., recurring 
at regular intervals (calendar time). 

INITIAL CONDITIONS 

1.  System under test is operational at the time of the first 
checkout, i.e., Node 4 of Figure 8 is "in" the network. 
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the process as it continues over a large period of time, assuming 

that the system is initially (at time T=0) in an operational state. 

The second is a network representation of the process over a single 

"typical" checkout cycle of duration c, where the initial transient 

caused by the "operational at T=0" assumption has been neutralized. 

Simulation of these two networks will be used to estimate a useful 

performance measure for evaluating alternative checkout and repair 

policies (such as a policy specifying the time c between checkouts). 

This measure is the "ready rate" of the system, where ready rate 

represents the proportion of time the system is "in-commission" (i.e., 

operational and not being subjected to checkout, repair or other activi- 

ties that make the system unavailable for immediate use.)  Each of the 

two models (checkout process over time and checkout cycle) and correspond 

ing network representations will now be discussed in more detail. 

CHECKOUT AND REPAIR PROCESS OVER TIME 

The network depicted in Figure 8 represents the process operating 

continuously over a period of time (t~r) and initially operational. 

The feedback loop on Node 3 represents the checkout cycle clock that 

periodically (every c time periods) regenerates a checkout activity. 

Another clock must be established so the network may be realized 

and the simulation ended. This simulation clock is represented by 

Activity (2,13) with t"T, where Node 13 is the (only) sink node in 

the network. 

The purpose of the checkout activity is to discover whether or 

not the system is nondefective (represented by Node 6) or defective 

(represented by Node 9). When the system is nondefective prior to 

checkout, the checkout activity including checkout stress may be 

thought of as the path containing Nodes 3, 4, 5 and 6 when the system 

survived the checkout stress, and Nodes 3,4, 5 and 9 when the check- 

out stress caused the system to fail.  During q x 100 percent of the 

time, the stress of a checkout will cause a nondefective system to fail. 

When the system is defective prior to checkout, the checkout 

activity is represented by the path containing Nodes 3, 8 and 9. 

Thus, Node 9 represents the end of a checkout cycle when the system 
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cithcr was nondefective prior to the checkout and did not survive the 

checkout stress or had failed due to natural deterioration since the 

checkout in the previous checkout cycle.  At this time the system is 

known to be defective and repair is initiated on the defective compo- 

nent (s). 

On the first cycle, either Activity (6,7) or (9,7) is used to start 

the failure clock depending upon which condition prevails after the 

first checkout stress.  After the first cycle, Node 7 merely serves as 

a convenient sink for Activity (11,7).  (Otherwise, Node 13 would not 

be the only sink node in the network.)  Once started, the failure clock 

represented by the feedback loop on Node 12 continues to regenerate 

component failures randomly, with the mean time between failure equal 

to pi. Whenever a failure occurs, Modification Activity 4 replaces Node 

4 by Node 8 (if it has not already done so), thereby reflecting the fact 

that the system will be entering the next scheduled checkout as nonopera- 

tional.  The failed components will not be identified until the end of 

the cycle (i.e., the end of the next scheduled checkout), at which time 

Modification Activity 3 returns the network to its original configuration, 

the system goes into repair and the cycle commences anew. 

The approach taken for this analysis was to simulate the network for 

a period of time considerably greater than the checkout cycle time 

(T»C) in order to neutralize the effect of the initial transcient caused 

by the assumption that the system is initially operational.  Throughout 

the simulation a count was taken of the number of times the system was 

in a defective status at the end of the checkout.  This was done by 

counting the number of times Activity (9,10) was realized.  The ratio 

of this number to the total number of checkouts made was then used as 

an estimate of the probability (p ,) that the system is defective at the 

end of any "typical" checkout cycle.  (This probability equals q only 

after the first checkout because of the "operational at T = 0" assumption.) 

In particular, the following parameters were used: 

The procedures for determining the appropriate length of simulation 
runs and/or for determining the appropriate number of network realizations 
for each simulation run are not presented here; rather, we will be con- 
centrating on the modeling aspects of the problem.  The reader is referred 
to Ref. [8] for a discussion of sample-size determination techniques. 
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Simulation time, T = 10,000 
Cycle time, c = 10 
Checkout time, s = 0 
Stress probability of failure, q = 0.25 
Repair time, r = 8 
Mean time to failure, u = 25 

The output of the simulation indicated that the counter associated 

with Activity (9,10) was realized 498 times during the T/c = 1000 cycles 

Hence, the estimated probability p  that the system is defective at the 

end of a typical cycle (or at the beginning of the next cycle) is 
* 

498/1000 = 0.498.   This statistic will now be used as one of the 

parameters in the checkout cycle model. 

CHECKOUT CYCLE 

The network of Figure 9 illustrates the checkout cycle where 

the probability of the system leaving the checkout in a defective 

state is the p, obtained from the preceding simulation.  Note that 

because the system has a negative exponential failure distribution, 

the failure clock can be reinitialized by Activity (4,7) even though 

the system remains operational from a previous cycle.  (Again, Node 7 

is used as a convenient sink for Activity (6,8).) 

The network contains two sink nodes and both are to be realized 

before the network is realized.  The interval of interest for a 

single realization of the network, however, is from time T=0 to time 

T=c and the statistic of interest for this interval is the expected 

ready rate: 

E Ready Rate  = E t./c 

where   t.   is   the   total   time  within a   cycle when  the   system  is   in  com- 

mission. 

* 
The analytic value for this probability is 

-c/u       -c/u 
Pd = q e     + 1 - e     = 0.4975, 
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The conditional LAGs (that is, the LAG given that it is positive (POSLAG) 

and the LAG given that it is negative (NEGLAG)) can be used to facili- 

tate the accumulation of in-coiranission periods of time, where the LAG 

(i,j) between any two nodes N. and N. is the difference between the 

first realization times of the two nodes; viz., T„  - T  .  When the 
J     i 

system is nondefective after checkout, the system is in-commission during 

the cycle from time T  until min JT  = c, T \,   i.e., 

t.|Nondefective = POSLAG (4,9) - NEGLAG (9,8). 

(Note that accumulations of LAGs occur only when both nodes are 

realized, and further that POSLAGs and NEGLAGs are expressed in abso- 

lute values.  Of course, for this simple case, POSLAG (4,9) = c.) 

When the system is defective after checkout, it becomes in-commission 

after repair has been completed unless failures have occurred since 

the checkout, and remains in-commission until min T  = c, T„ 
! N

9      
N
8 

This relationship is expressed as 

t.|Defective = POSLAG (6,9) - NEGLAG (9,8) + NEGLAG (6,8). 

Jointly, EJt.   = E POSLAG (4,9)' - E NEGLAG (9,8) 
( 11     ( 1    ' 1 

+ E POSLAG (6,9)' + E NEGLAG (6,8)j . 

The network in Figure 9 was simulated 500 times per simulation run. 

three replications per cycle time, with the following parameters being 

used : 

Case number I II III IV V VI VII 
Cycle time c = 8 10 11 12 13 20 40 
Prob. of being defective Pd = 

s = 
.454 .498 .517 .536 .544 .662 .849 

Checkout time 0 0 0 0 0 0 0 
Repair time r = 8 8 8 8 8 8 8 
Mean time to failure u = 25 25 25 25 25 25 25 

To illustrate the calculation of ready rate from our empirical 

data, selected results from one of the simulation runs are presented 

in Table 2 (viz., one in which c = 12).  From values in Table 2 and 

the previously mentioned relationship between E t.  and LAGs: 
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Table 2 

SELECTED SIMULATION RESULTS FOR c = 12, ONE REPLICATION 

Std. Prob. of 
Mean Dev. Min. Max. Occur. 

TLAG (4,9) 12.000 0.000 12.000 12.000 0.472 
POSLAG (4,9) 12.000 0.000 12.000 12.000 0.472 
NEGLAG (4,9)           

TLAG (9,8) 13.313 24.164 -11.989 88.000 1.000 
POSLAG (9,8) 26.474 22.959 0.234 88.000 0.602 
NEGLAG (9,8) 6.594 3.369 0.095 11.989 0.398 

TLAG (6,9) 4.000 0.000 4.000 4.000 0.528 
POSLAG (6,9) 4.000 0.000 4.000 4.000 0.528 
NEGLAG (6,9)           

TLAG (6,8) 16.233 23.842 - 7.776 92.000 0.528 
POSLAG (6,8) 27.005 23.161 0.625 92.000 0.344 
NEGLAG (6,8) 3.907 2.355 0.020 7.776 0.184 
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Et.  = (0.472)(12) - (0.398)(6.594) -I- (0. 528) (4.000) + (0.184) (3 . 907) 

= 5.871 

E Ready Rate  = 5.871/12 = 0.489. 

The average of the expected ready rates obtained from the three 

replications of each cycle time value are plotted in Figure 10.  The 

curve corresponding to the theoretical ready rate is also provided in 

Figure 10 for comparative purposes.  A comparison of the empirical 

values and the theoretical values indicates that the cycle time chosen 

by our approach to maximize expected ready rate would not differ 

markedly from the theoretically optimum cycle time. 

An approach similar to the one above for evaluating alternative 

checkout and repair policies might be useful for more general situa- 

tions, such as when imperfect checkout exists, imperfect repair exists, 

* 
The analytic value is given by the equation: 

E.Ready Rate! = 1 - i f (l-e"t/u)dt + (l-q)e"c/y[  (l-e~t/u)dt 

+ (l-e~c/^) r + qre-CH 

e^^ (eC/u - 1+q) -q 

(c/U) e"
c/^ 

For c = 12, u = 25, r = 8 and q = 0.25, 

E Ready Rate  = 0.4875. 

An approximation method for analytically obtaining the cycle time 
that maximizes ready rate is discussed in Ref. [l2j . 
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the activity times are random variables, etc.  Keep in mind, however, 

that the particular approach of isolating a typical cycle may become 

difficult for certain situations, such as when using a less well- 

behaved failure distribution than the negative exponential for describing 

the system failure characteristics.  In general, the modeling and 

analysis strategy may need to be modified depending upon the character- 

istics of the process being modeled.  The versatility of the simulator 

described in this paper, however, allows such modifications to be made 

easily. 
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